viewpoint

The Fate of Fortran-8x

A new ANSI/ISO standard for For-
tran seemed to be imminent in Oc-
tober, 1987, when the draft specifi-
cation for the new language
(provisionally called Foriran-8x) was
published for public review, this
being the formal ANSI procedure
prior to adoption of a new standard.
During the four-month public-
comment period (October 23, 1987-
February 23, 1988) | read the specifi-
cation (a 340-page book designated
$8.104)" and sent my 61-page Com-
ment to the ANSI drafting commit-
tee (X3]3) in February, 1988.

My comment was broadly critical
of the specification for reasons that
are summarized here, and I was in-
vited to present my views to the
X3]3 committee at its meeting in
Jackson, Wyoming, in August, 1988.
Attendance at the week-long meet-
ing was educational. I learned that
the X3]3 committee consists of about
40 volunteers representing the ma-
jor computer vendors and Fortran
users.

The X3]3 meetings had the flavor
of a political forum dominated by
debate about procedure and agenda
with frequent votes on alternative
proposals. The kind of technical dis-
cussion that one would expect in a
language design committee played a
very small part in the proceedings.
The chair of X3]3, Jeanne Adams,
acted mainly as a mediator between
the four or five factions within the
committee; Fortran-8x only reached
the public-comment stage after com-
promises within X3J3, as evidenced
by Removed Extensions in S8.104.

'i.e.. the version of the specification for Fortran-8x
current at the 104th meeting of X3)3.

© 1990 ACM 0001-0782,/90,/0400-0389 $1.50

April 1990 Volume 33 Number 4

This dissension within X3]3 arises
from a deep-seated technical incom-
patibility. Fortran-77 and earlier di-
alects are fundamentally flawed by
static memory allocation (as will be
explained), and some members of
X3]3 clearly recognize that in order
to change it into a modern, well-
designed language, one must not
only introduce new features, but
also remove some old features be-
cause old and new cannot rationally
co-exist. This is explicitly recog-
nized in $8.104 in a list of deprecated
and obsolescent features.

The countervailing argument is
that the new language must be
upward-compatible with the old
language. The S8.104 specification
attempted to reconcile these con-
flicting purposes through the con-
cept of Language Evolution, whereby
redundant and obsolescent features
would be slowly removed from the
ANSI standard over a 20-30-year
period. However, at the August 1988
meeting the concept of Language Ev-
olution was abandoned as one more
compromise between desirable
change and upward compatibility.

Following several more X3]3
meetings, version 112 of the specifi-
cation was put out for public review
in 1989 (July 27-November 24). The
revisions since the first public re-
view are (from my standpoint) mi-
nor; they do not address the funda-
mental problems that formed the
basis for my criticism and recom-
mendations.?

Synopsis of Recommendations
The purpose of the summary is to

? Despite ANSI's mandate, X3]3 has not formally

responded to my public comment.

re-affirm my technical judgment
that Fortran-8x should not become
an ANSI Standard regardless of fur-
ther (minor) revisions to the specifi-
cation. Fortran-77 should be re-
tained as the last ANSI/ISO
Standard dialect,® and its deficien-
cies should be remedied by selection
of an established block-structured
language (probably ADA, possible
Algol-68) as an alternative to For-
tran-8x. Fortran programmers
should be advised to switch to this
alternative language for their future
programming projects. Translation
of existing programs should be auto-
mated with a Fortran-77 to ADA/
Algol-68 pre-processor.

This strategy would bring U.S.
practice up to the state of the art in
the U.S.S.R., where Algol-68 is both
the dominant programming lan-
guage and the architectural basis of
their mainframe computers. While
similar, technically well-designed
systems are available in the U.S. (on
the Unisys/Burroughs mainframes),
they are not widely used.

My overall conclusions about
Fortran-8x are as follows:

e [ts semantic implications are not
fully defined in S8.104 especially
in regard to the introduction of
dynamic memory allocation. This
is the implicit new semantic fea-
ture of Fortran-8x that makes it
radically different from all earlier
dialects of the language.

® Fortran-8x will be a vast and com-
plex language similar to PL/1.
The creation of fully defined, bug-

® ANS Fortran-77 was re-affirmed by the ANSI
Board of Standards Review on August 1, 1989, Fur-
thermore. on October 18, the ANSI X3 committee
voled to retain Fortran-77 as a distinct standard
regardless of the eventual fate of Fortran-8x.

Communications of the ACM

389

Viewpoint

390

free compilers will be difficult and

costly.

The plethora of different concepts

and elements of the language,

each with its own rules, excep-
tions, prohibitions, and con-
straints, will make programming
in Fortran-8x a highly error-
prone, laborious, and costly busi-
ness. Many of the elements are re-
dundant, and some of the concepts
are logically wrong.

e The introduction of Fortran-8x
would be contrary to the trend in
computer systems, i.e., towards
simple, orthogonal designs based
on a minimal set of essential con-
cepts.

Politics, History, Commerce, and
Technology

My recommendations will surprise
the many people who accept Fortran
as the lingua franca of scientific and
engineering programming. In view
of its widespread use there must be
very well-founded reasons for aban-
doning Fortran in favor of an alter-
native language. These reasons are
best appreciated in the context of
the history of computing, presented
here from a personal perspective.

I wrote my first computer program
in 1961, and in 1962 I began using a
new computer (the Manchester
Atlas) that implemented dynamic
memory allocation via a hardware
stack. Its algebraic programming lan-
guage, Atlas Autocode (an Algol-60
dialect) had nested block structure,
dynamic array dimensioning, and
recursive routines, features that I
recognized then as vitally important
and whose fundamental significance
was revealed to me some years later
after studying the theory of compu-
tation.

Yet, Fortran programmers will
have to wait until the 1990s for
these vital programming tools—until
ADA of Algol-68 supersedes Fortran-
77. You may well ask (as I have
been asking for the past 25 years)
why has it taken so long? And fur-
thermore, what are the likely conse-
quences for Fortran programmers?

The brief answer to the “why so
long” question is that IBM adopted
the fundamentally flawed design
strategy of static memory allocation

Communications of the ACM

for the System /360, and as a result
of their dominant influence on the
whole industry, the design flaw was
propagated into many other manu-
factuers’ hardware and software.
The flaw became a defacto “stan-
dard,” whose detrimental effects on
the art and science of computing
seem destined to last well into the
21st century.

The Fundamental Theory

The constraint of static memory al-
location is a fundamental flaw be-
cause the most general kind of com-
putational process (a Turing
Machine process) requires dynamic
memory allocation. This require-
ment distinguishes the Turing Ma-
chine from the Finite-Automaton in
the theory of computation; the latter
is characterized by static memory
allocation.

Every process involves a program
and data, the essential distinction
between them being that the pro-
gram is the fixed (invariant) part of
the algorithm while the data is dif-
ferent in each run of the program.
The split between the program part
and the data part depends on the
algorithm’s specification.

Any process whose specification
implies a variable amount of data
storage is a Turing Machine process,
and if the program is to have its in-
variant attribute, then the program-
ming language and hardware must
allow for dynamic allocation of
memory for the variable amount of
data.

The vast majority of computing
tasks are Turing Machine processes,
i.e., they demand dynamic alloca-
tion of memory. For example, a typi-
cal scientific/engineering applica-
tion has at least one array whose
size is data dependent. The array
declaration in the program should
contain a run-time generated num-
ber as its size, and this should com-
pile into run-time {i.e., dynamic) al-
location of the requisite amount of
memory for the array. Recursion,
which has an essential role in the
theory of computation, also requires
dynamic memory allocation—for
the stack of return addresses and for
the local variables of each recursive
call.

If the programmer is restricted to
a language that does not allow for
dynamic memory allocation (as [
was restricted to Fortran in 1965-
75), then he or she must inevitably
make the program data-dependent,
thus vitiating the essential distinc-
tion between program and data.

When is a Program not a Program?
—when it is written in Fortran.
The practical consequence of this
fundamental flaw in the Fortran
language is that the user of the pro-
gram finds him or herself having to
revise and recompile the program
to match the data that is being pro-
cessed. In cases where array dimen-
sions are necessarily calculated at
run-time, the programmer may find
him or herself “inside a loop” (from
personal experience), editing and re-
compiling the program until he or
she iterates (by trial and error) to
array dimensions that match the
data.

Thus, the static-allocation design-
philosophy underlying Fortran
causes inefficiency (in both machine
and programmer time) compared
with dynamic allocation systems
such as Algol on a Burroughs main-
frame.

After 30 years (1957-87) of unwit-
tingly laboring under the debilitat-
ing constraint of static memory allo-
cation Fortran programmers are to
be released from their shackles.
Fortran-8x or preferably ADA/
Algol-68 will have dynamic array
dimensioning, recursive routines,
and nested block structure. How-
ever, Fortran-8x (unlike the prefera-
ble ADA /Algol-68 alternative)
would limit the nesting to two lev-
els—one of its rational compromises.

Block structure, which originated
in Algol-60, is fundamentally impor-
tant for localizing environments and
for achieving communication be-
tween a subroutine and its calling
environment. A detailed exposition
is appended to my comments on
Fortran-8x.

Fixing the Flaw vs. a Fresh Start
Despite the inclusion of dynamic
memory allocation facilities, the
prospect offered by Fortran-8x is not
an attractive one. The overall prob-

April 1990 Volume 33 Number 4

lem is that the X3]3 committee is
trying to reconcile two conflicting
purposes:

(1) The desire for compatibility with
Fortran-77 so that existing pro-
grams will compile.

{2) The need to enhance the lan-
guage with new features:

e to correct the design flaws that
were built into Fortran 30
years ago, and

® to add features (such as array-
returning functions) that have
been available elsewhere (i.e.,
in Algol-68) for 20 years or
more.

The complexity of Fortran-8x arises
from adding a large collection of
new language elements while re-
taining all the old ones. Conflicts
and redundancies belween old and
new are inevitable. For example,
there are six different kinds of array
declaration in Fortran-8x, and yet
analysis shows that only two are es-
sential: one to allocate memory for
an array and the other for array pa-
rameters of subroutines. Even if the
other four were deleted from For-
tran-8x (in the year 2021, according
to X3]3’s schedule for language evo-
lution—prior to its abandonment of
evolution), the syntax of the remain-

ing two should be changed to reflect
their very different semantics.

The features of the $8.104 specifi-
cation illustrate its overall lack of
coherence and rationality: the SAVE
and RECURSIVE declarators. SAVE
was introduced into Fortran-77 as a
semantically insignificant feature.
The Digital /VAX Fortran-77 manual
says that SAVE is “redundant” to
their compiler—because everything
is always saved, i.e., statically allo-
cated. In Fortran-8x, where dynamic
memory allocation must be imple-
mented, the absence of SAVE decla-
rations in old and trusted “proven”
programs will cause them to fail,
notwithstanding X3J3's claim that
any Fortran-77 program will con-
form under the Fortran-8x specifica-
tion. I named this phenomenon The
SAVE Time Bomb because it will
likely cause explosions throughout
the Fortran-speaking would.

While Fortran-8x will allow re-
cursive routines, the $8.104 specifi-
cation says that these must be quali-
fied with the RECURSIVE
declarator. If subroutine call and re-
turn is implemented by the well-
known mechanism of using a stack
for the return addresses, there is no
penalty in CPU time and memory
usage (compared with alternative
mechanism), and the bonus of recur-

Viewpoint

sion is obtained automatically, i.e.,
without any modifications (to allow
for recursion) to either the parser or
the code generator.

Thus, the RECURSIVE declarator
is totally redundant. For this reason,
programmers should not be faced
with the needless task of deciding
whether a subroutine is (indirectly)
recursive or not. Hence, I concluded
that the RECURSIVE declarator is a
design error in Fortran-8x. Its total
redundancy parallels that of SAVE
in Fortran-77.

In Summary

Despite important technical en-
hancements, notably implicit Dy-
namic Memory Allocation,* the For-
tran-8x proposal is unsatisfactory
because the language is encumbered
with many redundant and mutually
incompatible features.

The only technically rational way
of advancing the art of scientific and
engineering programming is to aban-
don Fortran in favor of a modern,
block-structured language such as
Algol-68 or ADA.

Geoffrey Hunter
Chemistry Department
York University
4700 Keele Street
Toronto, Ontario
Canada M3] 1P3

In Response to the Fate of Fortran-8x

Geoffrey Hunter raises some inter-
esting issues regarding the proposed
ANSI/ISO Fortran standard, com-
monly known as Fortran-8x (al-
though in 1990 the designation “8x"
appears inappropriale!). My overall
reaction to his objections is that the
issues most important to him are not
very important to the actual heavy-
duty Fortran users, and the issues
most important to the heavy-duty
Fortran users are ignored by Hunter.
Hunter’s central objection to the
proposed Fortran standard is that it
is not a modern block-structured
language. Who ever said that it
would be? If someone has an appli-
cation that critically relies on a

April 1990 Volume 33 Number 4

block-structured language, he or she
is not likely to try to implement it
using Fortran.

What is Fortran used for today? It
is used primarily for large-scale sci-
entific computations. Such applica-
tions typically have relatively sim-
ple subroutine trees and data
structures, and performance is a ma-
jor concern. The currently proposed
design of the Fortran language is en-
tirely adequate for accommodating
such applications. An equivalent
statement of Hunter's principal ob-
jection is that the proposed Fortran
standard should be rejected because
it would not be suitable for writing
operating systems.

Among my colleagues here at
NASA Ames there are a large num-
ber of highly expert programmers
and scientists who write serious ap-
plications on our supercomputers.
Many of them have completed
courses in computer science, and
most have significant experience us-
ing other languages. And yet, in dis-
cussions with them on possible en-
hancements to our Fortran language
environment, [have yet to hear any-

* A maijor deficiency of the draft specification is its
failure to explicitly recognize thal some of the new
features imply Dynamic Memory Allocation, This
semantic shortcoming parallels Fortran-77's failure
to explicitly recognize its implicit constraint af
Static Memory Allocation.

Communications of the ACM

39

Viewpoint

392

one mention Hunter’s primary con-
cerns. Similarly, in discussions with
others at large government laborato-
ries and the like, I have heard
expressions of concern about other
features of the proposed Fortran
standard, but I have never heard
anyone mention Hunter’s central
objections.

There are other flaws in Hunter's
arguments. I simply do not believe
that it is realistic to hope that seri-
ous Fortran application programs
could be automatically translated to
Ada or Algol-68. Also, the language
Algol-68 may have merit, but the
fact that it is used in the U.S.S.R. is
not a compelling reason to adopt it
in the U.S.

One of Hunter’s central objec-
tions, that the Fortran language is
inherently based on static memory
allocation, is not really true either
in theory or in practice. For exam-
ple, the Fortran compilers available
on Cray supercomputers have fea-
tured stack allocation for data and
stack-based subroutine calls for
some time. His warnings about the
SAVE Time Bomb are similarly mis-
placed—scientists running codes on
our Crays have found the adjust-
ment to using SAVE statements vir-
tually painless.

It is unquestionably true that
there are flaws in the proposed For-
tran standard, and many of them are
inescapable consequences of the
fact that Fortran is an old language
designed before the theory and
practice of programming was
well-understood. I, for one, am dis-
appointed in the clumsiness of a
number of the proposed features of
Fortran-8x. Hunter’s point that
Fortran-8x is contrary to the trend
of computer languages to be simple,
concise, and elegant is well-taken.
Hunter’s concern about the potential
difficulty of writing efficient and

bug-free compilers for Fortran-8x is
particularly valid.

However, there are some very im-
portant advantages to the proposed
Fortran standard. In particular, its
inclusion of array computation con-
structs is, in my view, a very impor-
tant step forward and by itself out-
weighs most of the objections that
have been raised against it. It is
noteworthy that the “obsolete” For-
tran language is the first major lan-
guage to take this step—such con-
structs are not yet proposed as part
of the standard for any “modern”
language.

We in the large-scale scientific
computation community are now
moving ahead very seriously with
plans to utilize the highly parallel,
teraflops-class systems that will be
available before the year 2000. In a
fairly wide range of applications that
we wish to map to these systems,
the central time-intensive computa-
tions can be expressed easily as ar-
ray operations, This class of compu-
tations certainly includes the large-
grid PDE codes that are the main-
stay of centers such as ours. The ar-
ray constructs of the proposed For-
tran standard are perfectly suited for
this type of computation. They rep-
resent the first serious step to pro-
viding standard parallel program-
ming constructs that can be
efficiently supported across a variety
of parallel systems, including both
SIMD and MIMD designs.

Because of the delay in the adop-
tion of the Fortran-8x standard, a
number of manufacturers of ad-
vanced systems have already taken
the step of implementing the basic
array computation features into
their compilers. Among the vendors
who now support these features are
Cray Research, Inc. and Thinking
Machines, Inc. So far, however, pro-
grammers are reluctant to incorpo-

rate these constructs into their codes
for the very valid reason that until
these constructs are part of the For-
tran standard, their codes may not
be portable to other systems.

Hunter summarizes by saying “the
only technically rational way of ad-
vancing the art of scientific and en-
gineering programming is to aban-
don Fortran in favor of a modern
block-structured language such as
Algol-68 or Ada.” This suggestion
will simply not be taken seriously
by the heavy-duty scientific compu-
tation community. These users sim-
ply cannot walk away from large ap-
plication programs with 100,000+
lines of code. Also, this suggestion
will not be taken seriously by those
of us who are exploring highly par-
allel scientific computation, since at
present, there is no prospect of
standardizing array computation
constructs in any major language
except Fortran-8x.

A case can be made that scientists
should be encouraged to consider
other languages for writing new ap-
plications. At NASA Ames, for ex-
ample, a number of the scientists
are writing scientific applications in
the C language. Also, vendors of
heavy-duty scientific computers
need to be encouraged to support al-
ternative languages on their system.
Further, standards committees
working on other languages need to
consider incorporating array con-
structs and possibly multitasking
constructs in their designs. But for
the foreseeable future, Fortran will
indisputably be the major language
for scientific computation. It is to-
tally unrealistic to pretend other-
wise.

David H. Bailey
NASA Ames Research Center
Moffet Field, CA 94035

I would like to comment on two as-
pects of Geoffrey Hunter's commen-
tary: the matter of the evolution of
Fortran and the workings of the
ANSI X3]3 technical subcommittee.

Communications of the ACM

Additional Thoughts

But first, 1 would like to report that
X3]3 has officially adopted the infor-
mal name “Fortran 90,” and the lan-
guage is expected to be approved
this year as an international stan-

dard and also a U.S. national stan-
dard, barring bureaucratic problems.
When work began in 1978 to re-
vise Fortran-77, many of us felt that
(continued on p. 398)

April 1990 Volume 33 Number 4

Forum

398

It is very difficult not to accept his
first statement since computers have
influenced every aspect of our life. It
is equally difficult to see Dijkstra’s
point of view with respect to the
second and third arguments. It is be-
cause, as pointed out by distin-
guished colleagues, his argument
consists of many inconsistencies and
misinterpretations.

The shallowness of his comments
on software engineering and soft-
ware maintenance can be strikingly
seen by anyone knowledgeable of
what these terms stand for. It is no
doubt an accepted fact that program
testing can only demonstrate the
presence of bugs but never their ab-
sence. Dijkstra’s argument, however,
seems to imply that we can do away
with testing once the formal proof
techniques are available to us. But is
it not naive to assume that formal

proofs will be error free? Formal
proofs do need human interaction.
And to err is human. Hence, as long
as any technology has a human ele-
ment associated with it, there is al-
ways a possibility of making errors.
Hence, software testing and formal
proof techniques can only be com-
plementary, but can never be alter-
native to each other; and they
together help reinforce user’s confi-
dence in the software.

Similarly, Hamming points out the
fallacious reasoning of the dominos
example, and Cohen points to the
inconsistency of Dijkstra’s argument
with respect to the “power of down-
to-earth mathematics.”

As every one agrees, despite in-
consistencies and misinterpreta-
tions, Dijkstra’s suggestions are
worth looking at. His prime sugges-
tion that formal methodologies need

to be taught right from the introduc-
tory computer courses is one of
them. It would be programmer’s de-
light to have formal mathematical
tools for program development. De-
spite Dijkstra’s optimism that formal
specifications and proof techniques
will be realized within fifty years,
however, many with real experi-
ence in programming-at-large con-
tinue to have their misgivings about
his statement. The problem is: to
what extent formal mathematical
techniques will help if the user is
not sure of his own requirements.

Only time will settle the contro-
versies brought to the fore by this
debate.

Srinivasarao Damerla
Department of EECS
University of Illinois at Chicago
Chicago, IL 60680

Viewpoint (continued from p. 392)

there should be some means of re-
moving old features that have more
efficient or more reliable replace-
ments. We decided 1o create a cate-
gory of these “obsolete features,”
which would be listed in the For-
tran 90 standard, possibly be re-
moved from the Fortran 2000 stan-
dard, and possibly fade from
compilers and general use around
2020. This schedule was considered
too radical by many people, both on
and off X3]3, so all the features that
really can make a difference in per-
formance, such as EQUIVALENCE,
were removed from the list, leaving
things like the assigned GOTO and
the PAUSE statements. Postponing
the elimination of these features, in
my opinion, is a great disservice to
future Fortran programmers; it
would have allowed for the evolu-
tion toward the “simple design
based on a minimal set of essential
concepts” that Hunter and others
know is desirable. Surely, 30 years
is sufficient time to eliminate these
features from working programs
when it is remembered that Fortran
itself is only a little more than 30
years old; but those who still feel
strongly about this one will have to

Communications of the ACM

try to do something about it during
the next revision cycle if there is
one.

The changes to Fortran, proposed
in the first draft published for public
review in 1987, took almost ten
years to develop. However, when
seen for the first time and all at
once, the changes seem to many
people to be more extensive than
they would like. At the same time,
many new members of X3J3 who
had not participated in the develop-
ment effort had the same reaction.
All of this resulted in the very un-
usual meeting in 1988 that Geoffrey
Hunter attended. At that meeting,
some were proposing a radical re-
duction of features and some were
proposing that we start over again.
The committee was divided to such
an extent that no single plan had
sufficient support. Five of us, fearing
that all the work of the past ten
years would go down the drain, pro-
duced a proposed draft based on the
then current draft. public com-
ments, and the known wishes of the
international Fortran community
(for example, provision was made
for multibyte characters, a feature
requested by the Japanese, and

square brackets were eliminated, as
requested by the Europeans). This
document was accepted by WG5,
the ISO Fortran working group, and
subsequently the features in it
formed the basis of the current
draft.

It is my opinion that the inclusion
of new features such as array pro-
cessing, modules, data structures,
recursion, pointers, and enhanced
procedure-calling mechanisms will
mean that Fortran 90 will continue
to be the most popular language for
scientific and engineering comput-
ing, but of course, it is the users and
their managers who will decide this.

Walt Brainerd
Director of Technical Work
ANSI X3]3
President, Unicorp Inc.
2002 Quail Run Drive N. E.
Albuquerque, NM 87122

Permission to copy without fee all or part of
this material is granted provided thal the copies
are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and
the title of the publication and its date appear,
and notice is given that copying is by permis-
sion of the Association for Computing Machin-
ery. To copy olherwise, or to republish, re-
quires a fee and/or specific permission.

April 1990 Volume 33 Number 4

